3,964 research outputs found

    Conceptual development of a ground-based radio-beacon navigation system for use on the surface of the moon

    Get PDF
    A spread-spectrum radio-beacon navigation system for use on the lunar surface is described. The subjects discussed are principle of operation and specifications to include power requirements, operating frequencies, weight, size, and range

    A mathematical model and CD4+ lymphocyte dynamics in HIV infection.

    Get PDF
    The paper presents a model of CD4 + lymphocyte dynamics in HIV-infected persons. The model incorporates a feedback mechanism regulating the production of T lymphocytes and simulates the dynamics of CD8 + lymphocytes, whose production is assumed to be closely linked to that of CD4 + cells. Because CD4 + lymphocyte counts are a good prognostic indicator of HIV infection, the model was used to simulate such therapeutic interventions as chemotherapy and active and passive immunization. The model also simulated the therapeutic administration of anti-CD8 antibodies; this intervention was assumed to activate T-cell production by activating a feedback mechanism blocked by the high numbers of CD8 + lymphocytes present in HIV-infected persons. The character and implications of the model are discussed in the context of other mathematical models used in HIV infection

    PAA8 COST OF REFRACTORY SEVERE PERSISTENT ASTHMA IN CZECH REPUBLIC—COST OF ILLNESS STUDY

    Get PDF

    Large deviations and optimal control forces for hard particles in one dimension

    Get PDF
    We analyse large deviations of the dynamical activity in one-dimensional systems of diffusing hard particles. Using an optimal-control representation of the large-deviation problem, we analyse effective interaction forces which can be added to the system, to aid sampling of biased ensembles of trajectories. We find several distinct regimes, as a function of the activity and the system size: we present approximate analytical calculations that characterise the effective interactions in several of these regimes. For high activity the system is hyperuniform and the interactions are long-ranged and repulsive. For low activity, there is a near-equilibrium regime described by macroscopic fluctuation theory, characterised by long-ranged attractive forces. There is also a far-from-equilibrium regime in which one of the interparticle gaps becomes macroscopic and the interactions depend strongly on the size of this gap. We discuss the extent to which transition path sampling of these ensembles is improved by adding suitable control forces

    Mean-Field Theory of Meta-Learning

    Full text link
    We discuss here the mean-field theory for a cellular automata model of meta-learning. The meta-learning is the process of combining outcomes of individual learning procedures in order to determine the final decision with higher accuracy than any single learning method. Our method is constructed from an ensemble of interacting, learning agents, that acquire and process incoming information using various types, or different versions of machine learning algorithms. The abstract learning space, where all agents are located, is constructed here using a fully connected model that couples all agents with random strength values. The cellular automata network simulates the higher level integration of information acquired from the independent learning trials. The final classification of incoming input data is therefore defined as the stationary state of the meta-learning system using simple majority rule, yet the minority clusters that share opposite classification outcome can be observed in the system. Therefore, the probability of selecting proper class for a given input data, can be estimated even without the prior knowledge of its affiliation. The fuzzy logic can be easily introduced into the system, even if learning agents are build from simple binary classification machine learning algorithms by calculating the percentage of agreeing agents.Comment: 23 page

    PUK11 Cost-Effectivness Analysis of Once Daily Versus Twice Daily Tacrolimus in Post-Renal Transplant Patients in the Czech Republic

    Get PDF

    A Role for Adenosine Deaminase in Drosophila Larval Development

    Get PDF
    Adenosine deaminase (ADA) is an enzyme present in all organisms that catalyzes the irreversible deamination of adenosine and deoxyadenosine to inosine and deoxyinosine. Both adenosine and deoxyadenosine are biologically active purines that can have a deep impact on cellular physiology; notably, ADA deficiency in humans causes severe combined immunodeficiency. We have established a Drosophila model to study the effects of altered adenosine levels in vivo by genetic elimination of adenosine deaminase-related growth factor-A (ADGF-A), which has ADA activity and is expressed in the gut and hematopoietic organ. Here we show that the hemocytes (blood cells) are the main regulator of adenosine in the Drosophila larva, as was speculated previously for mammals. The elevated level of adenosine in the hemolymph due to lack of ADGF-A leads to apparently inconsistent phenotypic effects: precocious metamorphic changes including differentiation of macrophage-like cells and fat body disintegration on one hand, and delay of development with block of pupariation on the other. The block of pupariation appears to involve signaling through the adenosine receptor (AdoR), but fat body disintegration, which is promoted by action of the hemocytes, seems to be independent of the AdoR. The existence of such an independent mechanism has also been suggested in mammals

    PMS20 Treatment of Patients with Moderate and Severe Psoriasis – Cost-of-Illness in the Czech Republic

    Get PDF
    corecore